skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Friedman, Jonathan_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Clock transitions (CTs) in spin systems, which occur at avoided level crossings, enhance quantum coherence lifetimes T2 because the transition becomes immune to the decohering effects of magnetic field fluctuations to first order. We present the first electron-spin resonance characterization of CTs in certain defect-rich silica glasses, noting coherence times up to 16 μs at the CTs. We find CT behavior at zero magnetic field in borosilicate and aluminosilicate glasses, but not in a variety of silica glasses lacking boron or aluminum. Annealing reduces or eliminates the zero-field signal. Since boron and aluminum have the same valence and are acceptors when substituted for silicon, we suggest the observed CT behavior could be generated by a spin-1 boron vacancy center within the borosilicate glass, and similarly, an aluminum vacancy center in the aluminosilicate glass. 
    more » « less